
Automatic Step Size Selection in Random Walk

Metropolis Algorithms

Todd Graves

Statistical Sciences

Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract

One of the obstacles users find in using the YADAS Markov chain Monte Carlo

package is that it is necessary to provide step sizes for all the Metropolis and Metropolis-

Hastings moves in the algorithm. This document describes new classes that allow

YADAS to tune step sizes automatically. The tuning algorithms work both for single

parameter and multiple parameter updates.

1 Introduction

YADAS (Graves, 2001, 2003a,b) is hard to use for many reasons; one of them is that

along with specifying the statistical model, users must supply step sizes for several

steps in the algorithm and tune these manually. This document describes a solution

to this problem. We experiment with several logarithmically spaced step sizes in a

trial period of iterations, monitoring the acceptance rates for each step size. We then

fit an approximate logistic regression model for acceptance rate as a function of step

size, then set each step size to the value that will give an acceptance rate of a desired

value.

Interesting cases will involve the need to tune several step sizes simultaneously.

There is as yet no indication that this should pose any problems. Critically, the ap-

proach and the software implementation work not just for single component updates

1

but also for YADAS’s multiple parameter updates. In a multiple parameter update,

a Metropolis(-Hastings) move proposes a simultaneous alteration to multiple parame-

ters, and such updates are very helpful in situations with highly correlated parameters.

For example, suppose that in a hierarchical model, several a priori exchangeable pa-

rameters θi have a common unknown mean µ, and the remaining parameters are such

that the value of µ is uncertain, but the θi are all close to µ. (This situation applies

in one-way ANOVA with some values for the random effect variances; see Graves

(2003b), Example 4.) Moving µ and the θi independently works poorly, because none

of these parameters can move quickly due to being forced to remain close to the oth-

ers. However, excellent mixing is possible when a naive algorithm is augmented with

a step that chooses Z ∼ N(0, 1), and proposes candidate values θC
i and µC according

to θC
i = θi + sZ for all i and µC = µ + sZ. Choosing a relatively efficient value of

s > 0 is the topic of this paper. See Graves, Speckman, and Sun (2003) for theory

and examples of multiple parameter updates.

We stress the tautology that finding suitable step sizes is sufficient only in the

case that the algorithm will obtain adequate samples given good step sizes, and

this assumes away the most difficult and interesting part of the MCMC algorithm

construction problem.

Related work

Gelman, Roberts, and Gilks (1995) work with algorithms consisting of a single Metropo-

lis move (not variable-at-a-time), and obtain many interesting results for the d-

dimensional spherical multivariate normal problem with a symmetric proposal dis-

tributions, including that the optimal scale is approximately 2.4d−1/2 times the scale

of the target distribution, which implies optimal acceptance rates of 0.44 for d = 1

and 0.23 for d → ∞.

Roberts and Rosenthal (2001) evaluate scalings that are optimal (in the sense of

integrated autocorrelation times) asymptotically in the number of components. They

2

find that an acceptance rate of 0.234 is optimal in many random walk Metropolis

situations, but their studies are also restricted to algorithms that consist of only a

single step in each iteration so are not directly applicable here, and in any case they

conclude that acceptance rates between 0.15 and 0.5 do not cost much efficiency.

Yeung and Wilkinson (2002) model lagged autocorrelation as, for example, a

quadratic response surface in tuning parameters, and use stochastic search algorithms

to obtain good values for the tuning parameters. Their focus is on comparing vari-

ous MCMC algorithms (standard Gibbs sampling vs. block updating, for example)

more than on demonstrating the efficiency of the tuning methodology. Pasarica and

Gelman (2004) aim to maximize the expected squared distance between successive

MCMC samples, since this is equivalent to minimizing first order autocorrelation,

and use importance sampling estimates of this quantity for several step sizes and

numerical optimization. This procedure is promising and includes the case of simul-

taneously optimizing multiple tuning parameters Its performance is likely to suffer

with increasing dimensionality of the tuning parameter, but it may be adaptable to

several individual optimizations instead of a single large one, which would be appro-

priate for the variable-at-a-time case.

Miller, Amon, and Reinhardt (2000) warn against using samples gathered while

step sizes are still being adjusted, and provide examples from physics where this

practice leads to large errors.

2 Philosophy

Markov chain Monte Carlo (MCMC) algorithms are often too badly flawed to be

saved by judicious choice of step sizes. This work assumes that they are not and that

the algorithm contains the right composition of steps. If correlations between pa-

rameters or multimodality prevent adequate exploration of the posterior distribution

regardless of the values of tuning parameters, more drastic measures are necessary.

3

Work proceeds on importance sampling and two methods of automatically design-

ing multiple parameter update: one based on Liu and Rubin (2002), and one more

uniquely appropriate to YADAS based on “bond inversion.”

The idea for how to tune step sizes, aiming to achieve a desired acceptance rate

that is the same for every update of every problem (we use 1/e, because this gives

the false impression that the target is a result of a theoretical study), is not well

established and is almost certainly inferior to some other simple notion. Gelman,

Gilks, and Roberts (cited in Ch 3 of MCMC in practice) report theoretical and

simulation-based justification for acceptance rates of 15 to 50%.

Once the goal of tuning step sizes to attain acceptance rates of 1/e (say) is ac-

cepted, it is surprisingly easy to achieve it. We find that the logit of the acceptance

rate is very nearly linear in the log of the step size. Consider, for example, the

case where the posterior distribution f(x) = (2π)−1/2 exp(−x2/2) is standard nor-

mal. Given that the current state of the Markov chain is x, we propose a new state

y ∼ N(x, s2) (i.e. the transition proposal density is T (x, y) = (2πs)−1/2 exp{−(y −

x)2/2s2}), define R(x, y) = T (y,x)
T (x,y)

f(y)
f(x)

, and accept the move to state y with proba-

bility min{1, R(x, y)}. The long–run acceptance rate is obtained by integrating the

acceptance probability with respect to the joint distribution of (x, y), namely

∫ ∞

−∞

∫ ∞

−∞
min{1, R(x, y)}T (x, y) dy f(x) dx

or

∫ ∫
{(x,y):R(x,y)≤1}

T (y, x) f(y) dy dx +
∫ ∫

{(x,y):R(x,y)>1}
T (x, y) f(x) dy dx,

which, if the proposal distribution is symmetric (if we are using the Metropolis algo-

rithm, with T (x, y) = T (y, x)), and if it is also continuous, reduces to

2
∫ ∫

{(x,y):f(y)>f(x)}
T (x, y) f(x) dy dx.

Observing that in the case where x and y|x are both normal, f(x) < f(y) if and only

4

if |x| > |y|, this can be rewritten

2
∫ ∞

∞

∫ |x|

−|x|
(2π|Σs|)

−1 exp{−
1

2
(x, y)Σ−1

s (x, y)T} dy dx,

where Σs is the covariance matrix of (x, y) (Σ11 = Σ12 = Σ21 = 1 and Σ22 = 1 + s2).

Next change variables to the independent standard normal (u, v)T = Σ−1/2
s (x, y)T . It

can be verified directly that Σ1/2
s = (2 + 2s + s2)−1(1 + s, 1, 1, 1 + s + s2), so that

{(u, v) : |x| > |y|} = {(u, v) : |(1 + s)u + v| > |u + (1 + s + s2)v|}.

Our acceptance rate therefore reduces to

2
∫ ∫

{(u,v):|(1+s)u+v|>|u+(1+s+s2)v|}
(2π)−1 exp{−

1

2
(u2 + v2)} dv du,

or

4
∫ ∞

0

∫ u 1
1+s

−u 2+s

2+s+s2

(2π)−1 exp{−
1

2
(u2 + v2)} dv du,

or

4
∫ ∞

0
{Φ(

x

1 + s
) − Φ(

−x(2 + s)

2 + s + s2
)}φ(x) dx.

Gelman, Roberts, and Gilks (1995) report, without elaboration, that this acceptance

rate “can be determined analytically” and equals 2
π

arctan(2
s
). They are right: one

way to check this is to substitute t = 2/s, and show that the derivative of this function

with respect to t is equal to 2
π
(1 + t2)−1. After differentiating, the integration can

easily be done in closed form, leaving some algebra to be done.

Plotting the logit of 2
π

arctan(2
s
) against log(s) demonstrates the very close approx-

imate linearity. Denote this function by p1(s); the subscript 1 refers to the standard

deviation of the posterior distribution. We have

logitp1(s) ≃ 0.76 − 1.12 log(s)

using a least squares fit of the numerically integrated function. Observe further that,

since clearly pσ(s) = p1(s/σ), we have

logitpσ(s) ≃ 0.76 − 1.12 log(s/σ) = (0.76 + 1.12 log σ) − 1.12 log s,

5

so that the slope of the relationship is nearly equal to the constant −1.12, indepen-

dently of σ. Clearly, this result holds for other means for x, and one expects the

same result to hold where x is a single component of a parameter with a(n approx-

imately) multivariate normal posterior. Therefore, to find an appropriate step size

for an approximately normal marginal distribution, one can consider collecting ac-

ceptance rate data for various step sizes and fitting a logistic regression with known

slope. The marginal distribution does not need to be very close to normal, either: for

example, simulations indicate that the slope for an exponential posterior distribution

is about −1.08, and so is the slope for a t distribution with 2 degrees of freedom.

These slopes are close enough to −1.12 that it is better to use the fixed slope than to

try to estimate a slightly different one using data.

Certainly, one could use the actual arctangent relationship to try to choose a

good s: in the univariate example, if p is the desired acceptance rate, then we obtain

s = 2σ/ tan(π
2
p), where σ is the posterior standard deviation, so we only need to

estimate σ. (Examples of results include s = 2.4σ for p = 0.44, s = 3.1σ for p = 1/e,

and s = 5.3σ for p = 0.23.) However, in variable-at-a-time random walk Metropolis

updates, one expects that the proper interpretation of σ is not the posterior standard

deviation but the average conditional standard deviation, which is presumably more

difficult to estimate from a Metropolis algorithm.

2.1 Trial stage and logistic regression

To take advantage of this relationship, we begin our MCMC algorithm with a trial

stage: the user specifies an initial guess for each proposal standard deviation. The

trial stage loops through nine (for example) logarithmically spaced step sizes twenty

times for each, and monitors the number of accepted moves for each step size. If one

then overlooks the fact that the slope in this regression can be taken to be known,

one can then fit a logistic regression:

logit(acceptance probability with step size s) = a + b log(s)

6

using Newton-Raphson, and use the estimated parameters to try to hit a target

acceptance rate ŝ = b̂−1(logit(ptarget)− â). The Newton-Raphson algorithm works as

follows. Let â(k) and b̂(k) be the estimates of a and b after k iterations. Let ni be

the number of trials for the ith step size, xi be the number of accepted moves, and si

be the ith step size. Let p̂
(k)
i = logit−1(â(k) + b̂(k) log si) be the estimated acceptance

probabilities for step size i after k iterations. Further let A(k) =
∑

i nip̂
(k)
i (1 − p̂

(k)
i),

B(k) =
∑

i ni(log si)p̂
(k)
i (1− p̂

(k)
i), and C(k) =

∑
i ni(log si)

2p̂
(k)
i (1− p̂

(k)
i). The Newton–

Raphson equations are

â(k+1) = a(k) + {A(k)
∑

i

(xi − nip̂
(k)
i) − B(k)

∑
i

(log si)(xi − nip̂
(k)
i)}/(A(k)C(k) − B(k)2)

b̂(k+1) = b(k) − {B(k)
∑

i

(xi − nip̂
(k)
i) + C(k)

∑
i

(log si)(xi − nip̂
(k)
i)}/(A(k)C(k) − B(k)2).

In practice, this algorithm converges quickly (in less than twenty iterations) with

starting values a(0) + b(0) = 0, for essentially all the data we have tried.

This algorithm has been implemented in YADAS in case we find an application

where the logistic slope differs substantially from -1.12. Most often, though, one

should fix the slope and estimate the intercept alone. Using the notation above, the

algorithm then updates the intercept a as follows:

a(k+1) = a(k) +

∑
i ni(

xi

ni

− p̂
(k)
i)

∑
i nip̂

(k)
i (1 − p̂

(k)
i)

.

This algorithm is less numerically stable. It can diverge readily, even when the al-

gorithm is augmented by step halving when the change to a shrinks the likelihood.

For this and other reasons, we actually perform the estimate with a “prior” for a in-

cluded for regularization purposes. A normal prior with mean µa = −3 and standard

deviation σa = 5 implies that the optimal step size will normally be between 10−5

and 103, and modifies the updating algorithm for a to

a(k+1) = a(k) +

∑
i ni(

xi

ni

− p̂
(k)
i) − a(k)−µa

σ2
a∑

i n̂ip̂
(k)
i (1 − p̂

(k)
i) + 1

σ2
a

.

7

2.2 Simulation experiment

Here we discuss a simulation experiment that explores how accurate the initial guesses

for step sizes need to be, and how many logarithmically spaced step sizes and how

many attempted steps at each step size are needed. Our experiment assumed that the

logistic regression model was correct, and that the acceptance rate for step size s is

logit−1{−5.7−1.12 log(s)}; the constants were chosen so that the “optimal” step size

is 0.01. The full factorial simulation experiment tried initial guesses of 0.01 × 2k for

k = {−7,−6, . . . , 0, . . . , 6, 7}, 3, 5, 7, 9, 11, 13, and 15 different step sizes per run, and

10,20,30,40, and 50 attempted steps per step size. (For example, suppose that the

initial guess was 0.16 and the number of step sizes was 9. The step sizes considered

would be 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, and 2.56. These step sizes yield

acceptance rates of 0.368, 0.700, 0.903, 0.974, 0.993, 0.998, 1.000, 1.000, and 1.000.) For

each combination of these variables, we constructed 100 simulated data sets using the

logistic regression model, estimated a with fixed b = −1.12145 using the Newton–

Raphson algorithm, recommended a step size based on the estimated a and b, and

counted how many times out of 100 the recommended step size would generate an

acceptance rate between 0.25 and 0.45. (For the example with initial guess 0.16 and

nine step sizes, the number of “successes” with 10, 20, 30, 40, and 50 attempts per

step size were 73, 88, 84, 92, and 91 respectively.) The simulation results are a little

erratic to report: the discreteness of the possibilities means that by chance a good

step size can be chosen although the data are inadequate. For example, if the initial

guess is 0.01 × 27, we only attempt three step sizes ten times each, and we get zero

acceptances at each step size (which happens about 92% of the time), the algorithm

will choose a step size of 0.011, for an acceptance rate of 34%. The designs adjacent

to this case all have essentially zero probability of getting an acceptable step size.

Less severe nonmonotonicities exist as well.

We assume that the initial guess at the step size is off by a given power of two, and

report the total trial sample size that yields a success rate (acceptance rate between

8

25 and 45%) of at least 95%. If one’s initial guess is exactly right, a total sample

size of 120-180 is adequate, and most efficient is 40 trials at each of three step sizes.

Not surprisingly, this minimal number of step sizes ceases to be efficient quickly when

one’s initial guess is off. When the initial guess is too large by a factor of two, roughly

200 total trials are needed, and there are several equally efficient ways of getting there:

20 each at 9 or 11 levels, 30 each at 7 levels, or 40 at 5 levels. When the initial guess

is too high by a factor of 4, 8, 16, or 32, 20 trials at each level are appropriate, and

the number of levels should be 11, 11, 13, and 15 respectively: the number of levels

needs to be large enough so that at least two step sizes smaller than the optimal are

attempted. Overestimating the step size by a factor of 64 can be overcome with 30

trials at each of 15 levels, and an overestimate by a factor of 128 should be avoided.

The situation is not symmetric when one underestimates the optimal step size: in

fact, it is better to underestimate it a bit, which is unsurprising since lower step sizes

imply acceptance rates of closer to 0.5, making each trial more informative. Forty

trials at each of three levels continues to work well if the initial guess is too low by a

factor of two or four. Underestimates of factors of 8, 16, and 32 require total sample

sizes of about 180, 220, and 280 respectively, and any choice 20, 30, or 40 per step

size is about equally effective.

Of course, one may desire a lower or higher than 95% probability of getting an

acceptance rate between 25% and 45%. YADAS sends the chosen step sizes to output

files.

3 Implementation

In this section we discuss the YADAS classes that can be used to tune step sizes. For

an introduction to YADAS’s software design, please see Graves (2001, 2003a,b).

In YADAS, the definition of an algorithm is a collection of objects implementing

the MCMCUpdate interface. YADAS loops through this collection of updates, calls the

9

update() method of each, and each of these attempts to change the values of one

or more unknown parameters. One complete cycle through the collection of updates

is one iteration in the MCMC algorithm, and the current values of the parameters

are then sent to output files. The simplest example of a object implementing the

MCMCUpdate interface is a parameter. A parameter’s update() method loops through

the components in the parameter, attempting a Gaussian random walk Metropolis

move to each. Another type of update is the MultipleParameterUpdate, which has

the capability of proposing a Metropolis or Metropolis–Hastings move that affects

multiple parameters simultaneously: the proposed move is defined using a Perturber.

3.1 UpdateTuner

To introduce step size tuning to YADAS, we built a class called UpdateTuner that

itself implements MCMCUpdate and can be inserted into the collection of updates in

a YADAS algorithm. The UpdateTuner supervises another update, altering its step

sizes and monitoring its acceptance rates during a trial phase, analyzing the results

of the trial experiment, and then selecting step sizes for the final phase of the MCMC

algorithm. To define an UpdateTuner, one specifies:

• An object implementing the TunableMCMCUpdate interface, which will be de-

scribed below: this is the update step whose step size we are trying to tune. A

TunableMCMCParameter is an example of such an object;

• an array of initial guesses for step sizes, one for each step in the update;

• an integer defining the number of trial step sizes to use in the experiment;

• an integer defining the number of attempts per trial step size; and

• a target acceptance rate (we typically use 1/e).

The last five of these arguments can be omitted; they have default values of: the step

sizes assigned to the update, 11, 20, 1, and 1/e.

10

3.2 TunableMCMCUpdate

The TunableMCMCUpdate interface extends the MCMCUpdate interface in the following

way. It introduces several new methods:

• getStepSizes() returns a vector of doubles, the values of the step sizes cur-

rently used by the update. This is actually not used by the UpdateTuner class

so may disappear.

• setStepSize has two signatures; one changes a single step size, the other the

entire vector.

• acceptances() returns a vector of numbers of acceptances, one for each step

size.

• tuneoutput() writes the ultimately selected step sizes to a file with extension

.tun.

If a user wants to write a new type of update and wants it to be tunable, the user must

ensure that the new update includes appropriate definitions for all these methods. Im-

portant update classes that are tunable are MCMCParameter and TunableMultipleParameterUpdate.

3.2.1 Additions to MCMCParameter

We included all the tuning code in the MCMCParameter class itself rather our first in-

tention, which was to have a TunableMCMCParameter subclass. The TunableMCMCUpdate

methods do reasonable things. An MCMCParameter includes a vector of unknown

scalar parameters, each of which has a step size, and these are the step sizes that are

accessed.

Defining parameters in a YADAS application with tuning is identical to applica-

tions without, the only exception being that the step sizes included in the definition

of a parameter are initial guesses only.

11

3.2.2 TunableMultipleParameterUpdate

One of YADAS’s specialties is adding steps to MCMC algorithms that improve

mixing by moving multiple parameters together. This functionality is centered in

the MultipleParameterUpdate class, and especially the Perturber interface. A

MultipleParameterUpdate consists only of an array of parameters and a Perturber.

The Perturber includes all the specialization, such as the method (perturb()) that

produces proposed new values of the parameters, given their old values, and also

calculates the ratio of proposal probabilities that appears in the acceptance rate for

Metropolis–Hastings moves. The perturb() method frequently depends on one or

more tunable step sizes. A canonical example is the NewAddCommonPerturber. It

is quite common that a posterior distribution is approximately a function of differ-

ences of some parameters, so that the posterior is relatively insensitive to trans-

formations that add a common constant to all those parameters. This is what

NewAddCommonPerturber does: it samples a random Gaussian Z with some stan-

dard deviation s, and proposes a Metropolis move in which several parameters are

incremented by Z. More generally, the parameters can be divided into groups, each

of which gets its own random Zj and each of which has its own standard deviation

sj. In this case we want to tune the sj’s.

All the Perturbers included in the YADAS package are tunable. We did not in-

clude the tuning capability in the Perturber interface (rather it is in the TunablePerturber

interface) because we didn’t want to make it more difficult than necessary for users to

write new Perturbers, but we will try to ensure that the ones we write are as usable

as possible, and that includes making them tunable.

YADAS also includes a class ReversibleJumpUpdate which is not yet tunable;

further study is required before it is clear that tuning acceptance rates is appropriate

in reversible jump problems.

12

4 Examples

Finally, in this section, we present some examples of the tuning process in practice.

First, we work with a normal example with unknown mean and variance and tune

both step sizes. Second, we work with a one-way ANOVA that has been parameterized

poorly with resultant poor mixing, fix the mixing with a MultipleParameterUpdate,

and tune its step size along with the others in the problem. The source code and data

for these examples are available on the YADAS website yadas.lanl.gov; follow the

“Download” link and then download the zipped directory of examples.

4.1 Normal example

In this problem, Example 10 on the YADAS web site, we have data yi ∼ N(µ, σ2)

for i 1, . . . , N , with priors µ ∼ N(aµ, b
2
µ) and σ ∼ Γ(aσ, bσ) (according to our param-

eterization, σ has prior mean aµbµ). Each iteration in the MCMC algorithm has two

steps: a Metropolis move in which we propose a Gaussian random walk move to µ

(i.e. µ′ = µ + s1Z1, where Z1 ∼ N(0, 1), and a Metropolis–Hastings move in which

we propose a lognormal adjustment to σ (i.e. σ′ = σ exp(s2Z2), where Z2 ∼ N(0, 1).

s1 and s2 must be tuned.

The key piece of code in the tuning application is

MCMCUpdate[] updatearray = new MCMCUpdate[]

{ new UpdateTuner(mu, d0.r("mumss"), 11, 20, 1, Math.exp(-1)),

new UpdateTuner(sigma, d0.r("sigmamss"), 11, 20, 1, Math.exp(-1)) };

in which we define the algorithm to consist of two update steps as described above,

and whose step sizes will be tuned. Beginning with the first UpdateTuner, mu is

the definition of the update step (here, a Gaussian random walk update to µ). The

expression d0.r(‘‘mumss’’) defines a vector of initial guesses for step sizes (only one

here, and this expression gets them from an input file). The 11 refers to the number

of different step sizes to experiment with, the experiment will attempt 20 moves for

13

each step size, the 1 means only one cycle of experimentation, and the last argument

implies that the step size will be tuned for an acceptance rate of 1/e. The fact that

σ will be updated using Gaussian random walk moves on the log scale has been

determined elsewhere (sigma was defined to be a MultiplicativeMCMCParameter

instead of just a MCMCParameter).

4.2 Badly parameterized one-way ANOVA example

This example, Example 11 on the YADAS website, shows that the tuning proce-

dure works even in cases where multiple parameters are updated at once. This is

a one-way analysis of variance example that is commonly used to illustrate mixing

difficulties in MCMC algorithms that can be solved with reparameterization. Data

yij are normal with means µi and common standard deviation σ for i = 1, 2, . . . , I

and j = 1, 2, . . . , ni. Here we have taken the µi to have a N(θ, δ2) prior, θ has a

flat hyperprior, and σ and δ have Gamma priors. This parameterization works fine

except when δ is too small compared to σ (the sample sizes also drive what is meant

by “too small”). In this case, the µi and θ have high posterior correlation so that it

works poorly to update them individually. Many solutions exist including reparame-

terization or block Gibbs updates, but here we use a MultipleParameterUpdate that

augments the standard variable-at-a-time Gaussian random walk Metropolis with an

additional step that proposes adding a common random Gaussian perturbation to

all the µi and θ. The posterior distribution is relatively invariant to moves like this,

at least when δ is small, as it is in the supplied input files. The code to define the

update algorithm is as follows:

MCMCUpdate[] updatearray = new MCMCUpdate[] {

new UpdateTuner (mu), new UpdateTuner (theta),

new UpdateTuner (sigma), new UpdateTuner (delta),

new UpdateTuner (new TunableMultipleParameterUpdate

(new MCMCParameter[] {mu, theta},

14

mu_1

0 2000 4000 6000 8000 10000

10
15

20
25

30

theta

0 2000 4000 6000 8000 10000

10
15

20
25

sigma

0 2000 4000 6000 8000 10000

2.
2

2.
4

2.
6

2.
8

3.
0

delta

0 2000 4000 6000 8000 10000

-2
-1

0
1

Figure 1: Trace plots for µ1, θ, log σ, and log δ in the one–way ANOVA example.

new NewAddCommonPerturber (new int[][] { d2.i(0), d0.i(0) },

d0.r("mtmss")), direc + "mtu")) };

Here we have used the default values for the experimental design descriptors (11

different trial step sizes for 20 attempts each, and so on). This example successfully

tunes a total of four scalar parameters that are updated on the linear scale, two

updated on the log scale, and one multiple parameter update. Trace plots of the

MCMC iterations are shown in Figure 1.

References

Gelfand, A.E. and Sahu, S.K (1994). On Markov chain Monte Carlo acceleration.

Journal of the American Statistical Association 3(3): 261-276.

Gelman, A.B., Carlin, J.S., Stern, H.S., and Rubin, D.B. (1995) Bayesian Data

Analysis, Chapman and Hall/CRC, Boca Raton.

Gelman, A., Roberts, G.O., and Gilks, W.R. (1995). Efficient Metropolis jumping

rules. In Bayesian Statistics 5 (J.M. Bernardo, J. Berger, A.P. Dawid, and

A.F.M. Smith, eds.) Oxford: Oxford University Press.

15

Graves, T.L. (2001) “YADAS: An Object-Oriented Framework for Data Analysis

Using Markov Chain Monte Carlo,” Los Alamos National Laboratory Technical

Report LA-UR-01-4804.

Graves, T.L. (2003a) “A Framework for Expressing and Estimating Arbitrary Sta-

tistical Models Using Markov Chain Monte Carlo,” Los Alamos National Lab-

oratory Technical Report LA-UR-03-5934.

Graves, T.L. (2003b) “An Introduction to YADAS,” yadas.lanl.gov.

Graves, T.L., Speckman, P.L., and Sun, D. (2004), “Characterizing and eradicating

autocorrelation in MCMC algorithms for linear models,” Los Alamos National

Laboratory Technical Report LA-UR-04-0486.

Miller, M.A., Amon, L.M., and Reinhardt, W.P. (2000), Should one adjust the

maximum step size in a Metropolis Monte Carlo simulation? Chemical Physics

Letters 331, 278-284.

Pasarica, C. and Gelman, A. (2004), Adaptively scaling the Metropolis algorithm

using the expected squared jumped distance. Unpublished manuscript.

Roberts, G.O. and Rosenthal, J.S. (2001), Optimal scaling for various Metropolis–

Hastings algorithms, Statistical Science 16, 351–367.

Yeung, S.K.H. and Wilkinson, D.J. (2002), Adaptive Metropolis-Hastings samplers

for the Bayesian analysis of large linear Gaussian systems, Computing Science

and Statistics 33: 128-138.

16

